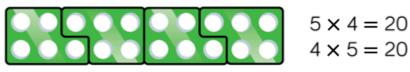

Multiplication and Division Policy

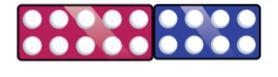
Bar Model

Benefits

Children can use the single bar model to represent multiplication as repeated addition. They could use counters, cubes or dots within the bar model to support calculation before moving on to placing digits into the bar model to represent the multiplication.

Division can be represented by showing the total of the bar model and then dividing the bar model into equal groups.


It is important when solving word problems that the bar model represents the problem.


Sometimes, children may look at scaling problems. In this case, more than one bar model is useful to represent this type of problem, e.g. There are 3 girls in a group. There are 5 times more boys than girls. How many boys are there?

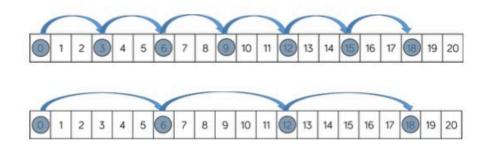

The multiple bar model provides an opportunity to compare the groups.

Number Shapes

$$18 \div 3 = 6$$

Children can build multiplications in a row using the number shapes. When using odd numbers, encourage

Benefits


number shapes. When using odd numbers, encourage children to interlock the shapes so there are no gaps in the row. They can then use the tens number shapes along with other necessary shapes over the top of the row to check the total. Using the number shapes in multiplication can support children in discovering patterns of multiplication e.g. odd \times odd = even, odd \times even = odd, even \times even = even.

Number shapes support children's understanding of

multiplication as repeated addition.

When dividing, number shapes support children's understanding of division as grouping. Children make the number they are dividing and then place the number shape they are dividing by over the top of the number to find how many groups of the number there are altogether e.g. There are 6 groups of 3 in 18.

Number Tracks

 $6 \times 3 = 18$ $3 \times 6 = 18$

 $18 \div 3 = 6$

Benefits

Number tracks are useful to support children to count in multiples, forwards and backwards. Moving counters or cubes along the number track can support children to keep track of their counting. Translucent counters help children to see the number they have landed on whilst counting.

When multiplying, children place their counter on 0 to start and then count on to find the product of the numbers.

When dividing, children place their counter on the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0. Children record how many jumps they have made to find the answer to the division.

Number tracks can be useful with smaller multiples but when reaching larger numbers they can become less efficient.

Bead Strings

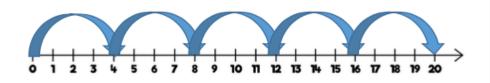
5 × 3 = 15	$15 \div 3 = 5$
$3 \times 5 = 15$	10 . 0 - 0

5 × 3 = 15	$15 \div 5 = 3$
$3 \times 5 = 15$	$10 \div 0 = 0$

-0000-0000-0000-0000-

$4 \times 5 = 20$	$20 \div 4 = 5$
$5 \times 4 = 20$	20.4-0

Benefits


Bead strings to 100 can support children in their understanding of multiplication as repeated addition. Children can build the multiplication using the beads. colour of beads supports children in seeing how many groups of 10 they have, to calculate the total more efficiently.

Encourage children to count in multiples as they build number e.g. 4, 8, 12, 16, 20.

Children can also use the bead string to count forward and backwards in multiples, moving the beads as they count.

When dividing, children build the number they are dividing and then group the beads into the number the are dividing by e.g. 20 divided by 4 – Make 20 and the group the beads into groups of four. Count how many groups you have made to find the answer.

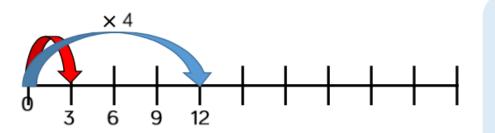
Number Lines (labelled)

 $4 \times 5 = 20$ $5 \times 4 = 20$

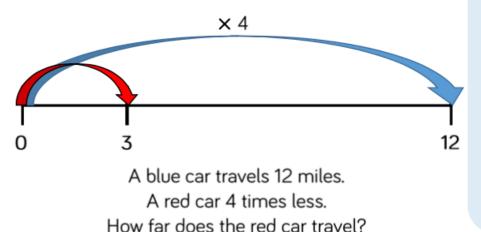
 $20 \div 4 = 5$

Benefits

Labelled number lines are useful to support children to count in multiples, forwards and backwards as well as calculating single-digit multiplications.


When multiplying, children start at 0 and then count on to find the product of the numbers.

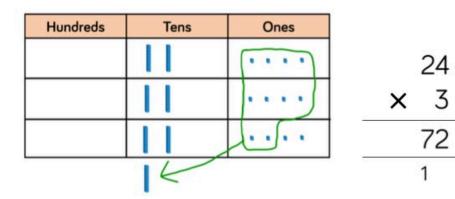
When dividing, start at the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0.

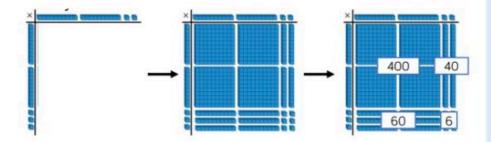

Children record how many jumps they have made to find the answer to the division.

Labelled number lines can be useful with smaller multiples, however they become inefficient as numbers become larger due to the required size of the number line.

Number Lines (blank)

A red car travels 3 miles. A blue car 4 times further. How far does the blue car travel?


Benefits

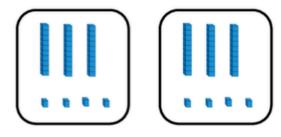

Children can use blank number lines to represent scaling as multiplication or division.

Blank number lines with intervals can support children to represent scaling accurately. Children can label intervals with multiples to calculate scaling problems.

Blank number lines without intervals can also be used for children to represent scaling.

Base 10/Dienes (multiplication)

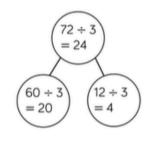
Benefits


3

Using Base 10 or Dienes is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written representations match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed.

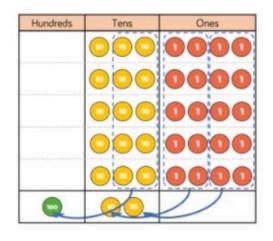
Base 10 also supports the area model of multiplication well. Children use the equipment to build the number in a rectangular shape which they then find the area of by calculating the total value of the pieces This area model can be linked to the grid method or the formal column method of multiplying 2-digits by 2-digits.


Base 10/Dienes (division)

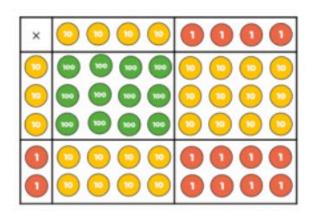
$$68 \div 2 = 34$$

Tens	Ones
	• • • •
	••••
	• • • •

$$72 \div 3 = 24$$


Benefits

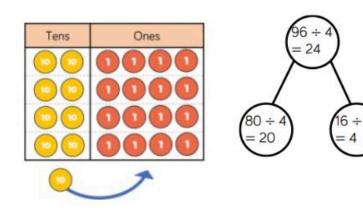
Using Base 10 or Dienes is an effective way to support children's understanding of division.

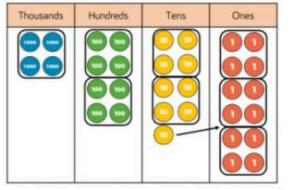

When numbers become larger, it can be an effective way to move children from representing numbers as ones towards representing them as tens and ones in order to divide. Children can then share the Base 10/ Dienes between different groups e.g. by drawing circles or by rows on a place value grid.

When they are sharing, children start with the larger place value and work from left to right. If there are any left in a column, they exchange e.g. one ten for ten ones. When recording, encourage children to use the partwhole model so they can consider how the number has been partitioned in order to divide. This will support them with mental methods.

Place Value Counters (multiplication)

	34
×	5
1	70
1	2


Benefits


Using place value counters is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed The counters should be used to support the understanding of the written method rather than support the arithmetic.

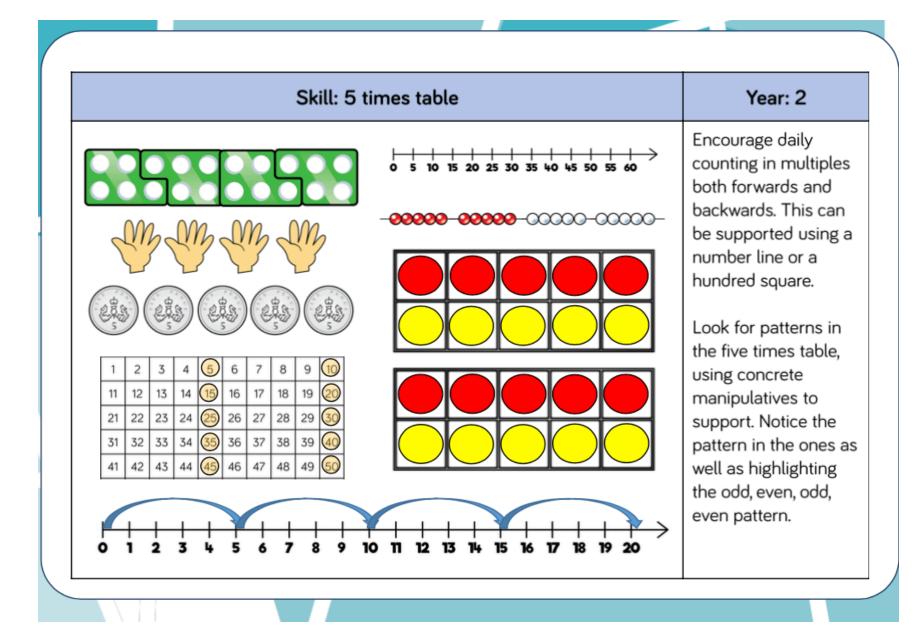
Place value counters also support the area model of multiplication well. Children can see how to multiply 2-digit numbers by 2-digit numbers.

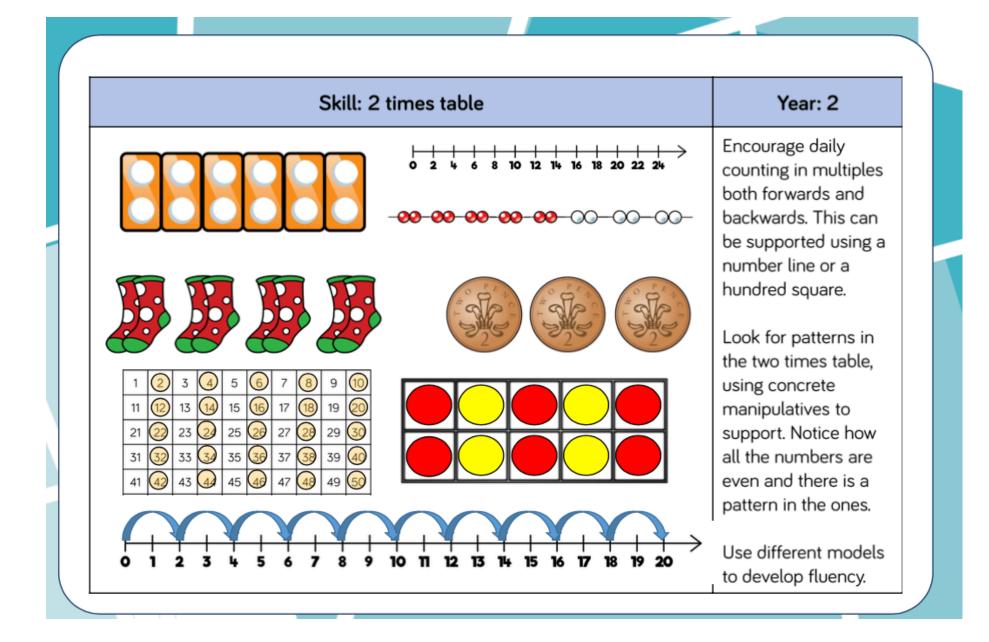
Place Value Counters (division)

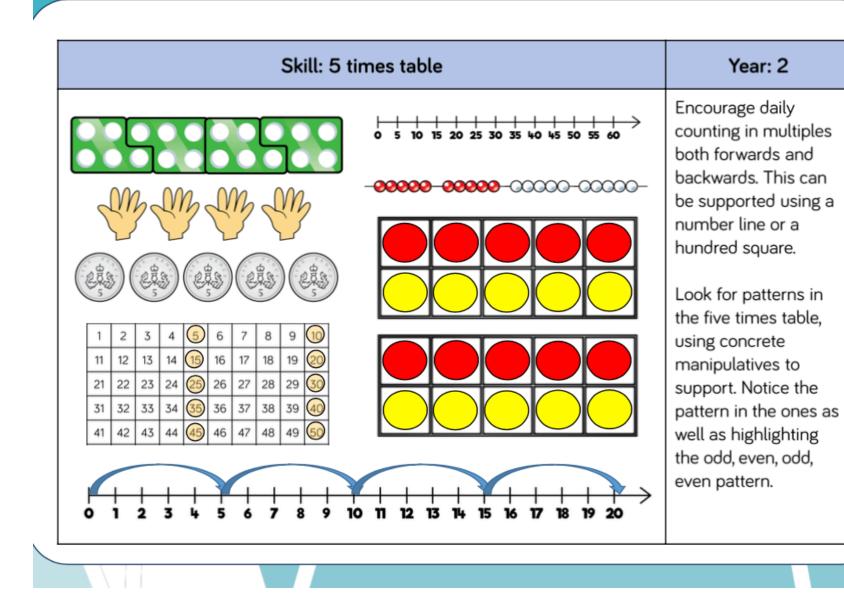
1223 4892 4

Benefits

Using place value counters is an effective way to support children's understanding of division.

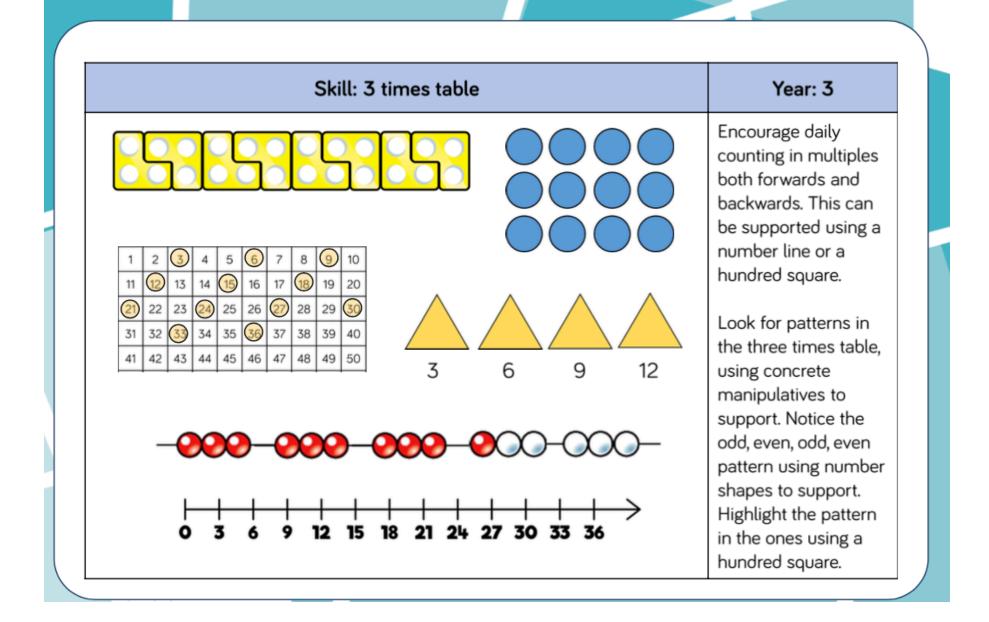

When working with smaller numbers, children can use place value counters to share between groups. They start by sharing the larger place value column and work from left to right. If there are any counters left over once they have been shared, they exchange the counter e.g. exchange one ten for ten ones. This method can be linked to the part-whole model to support children to show their thinking.

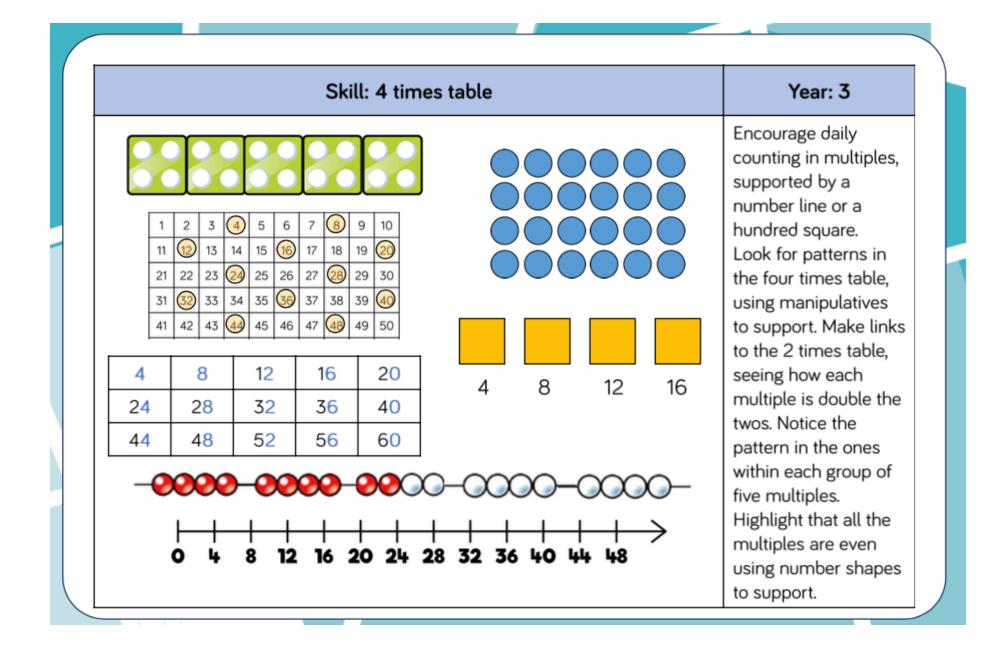

Place value counters also support children's understanding of short division by grouping the counters rather than sharing them. Children work from left to right through the place value columns and group the counters in the number they are dividing by. If there are any counters left over after they have been grouped, they exchange the counter e.g. exchange one hundred for ten tens.



Skill	Year	Representatio	tions and models				
Recall and use		Bar model	Ten frames				
multiplication and		Number shapes	Bead strings				
division facts for the		Counters	Number lines				
2-times table		Money	Everyday objects				
Recall and use	2	Bar model	Ten frames				
multiplication and		Number shapes	Bead strings				
division facts for the		Counters	Number lines				
5-times table		Money	Everyday objects				
Recall and use	2	Hundred square	Ten frames				
multiplication and		Number shapes	Bead strings				
division facts for the		Counters	Number lines				
10-times table		Money	Base 10				

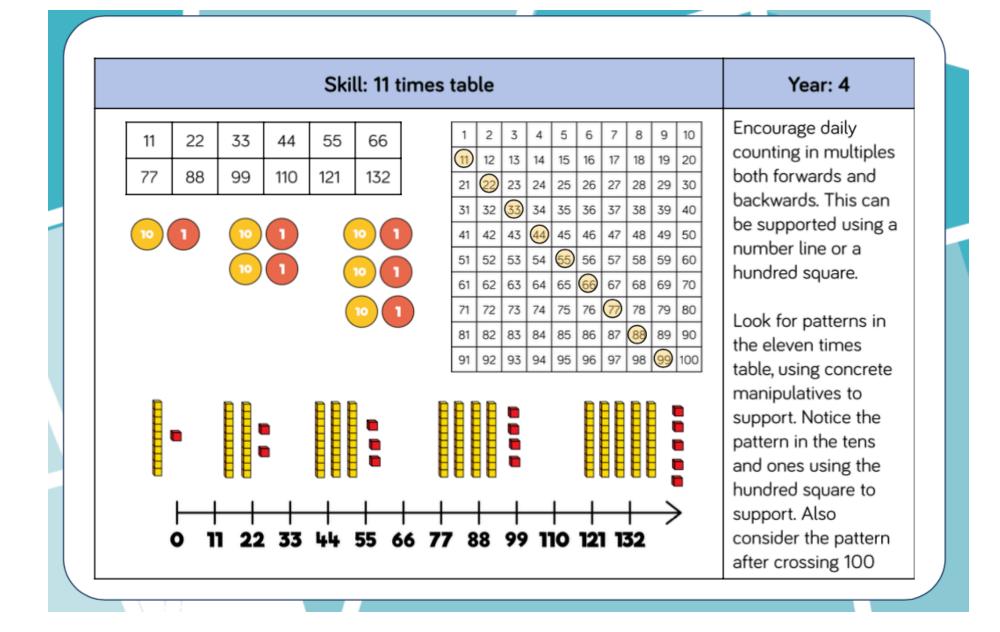
Skill	Year	Representatio	ons and models
Recall and use multiplication and division facts for the 3-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 4-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 8-times table	3	Hundred square Number shapes	Bead strings Number tracks Everyday objects
Recall and use multiplication and division facts for the 6-times table	4	Hundred square Number shapes	Bead strings Number tracks Everyday objects





Skill: 10	Year: 2									
	0 10				 0 60			+ 90		Encourage daily counting in multiples both forwards and
					10 10 10		a line)	backwards. This can be supported using a number line or a hundred square.
	1	2	3	4	5	6	7	8	9 10	Look for patterns in
	11	12	13	14	15 1	16	17	18 1	9 📀	the ten times table,
	21	22	23	24	25 2	26	27	28 2	9 30	using concrete
	31	32	33	34	35 3	36	37	38 3	9 40	manipulatives to
	41	42	43	44	45 4	46	47	48 4	9 50	support. Notice the
	51	52	53	54	55 5	56	57	58 5	9 🙆	pattern in the digits-
	61	62	63	64	65 6	66	67	68 6	9 🕜	the ones are always 0
	71	72	73	74	75 7	76	77	78 7	9 80	and the tens increase
	81	82	83	84	85 8	36	87	88 8	9 90	by 1 ten each time.
	91	92	93	-	-	+	-+	-	9 00	

_

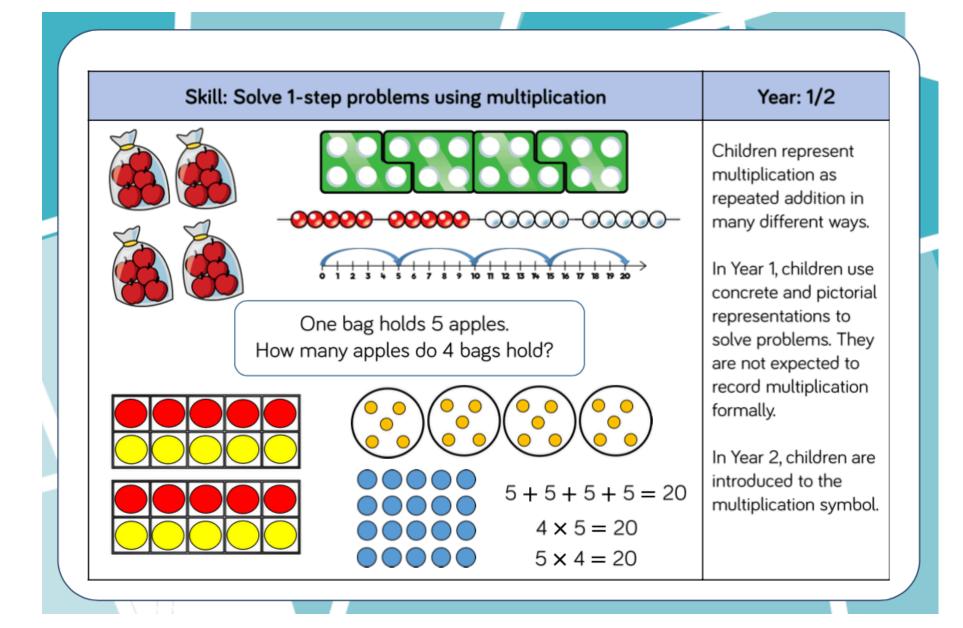


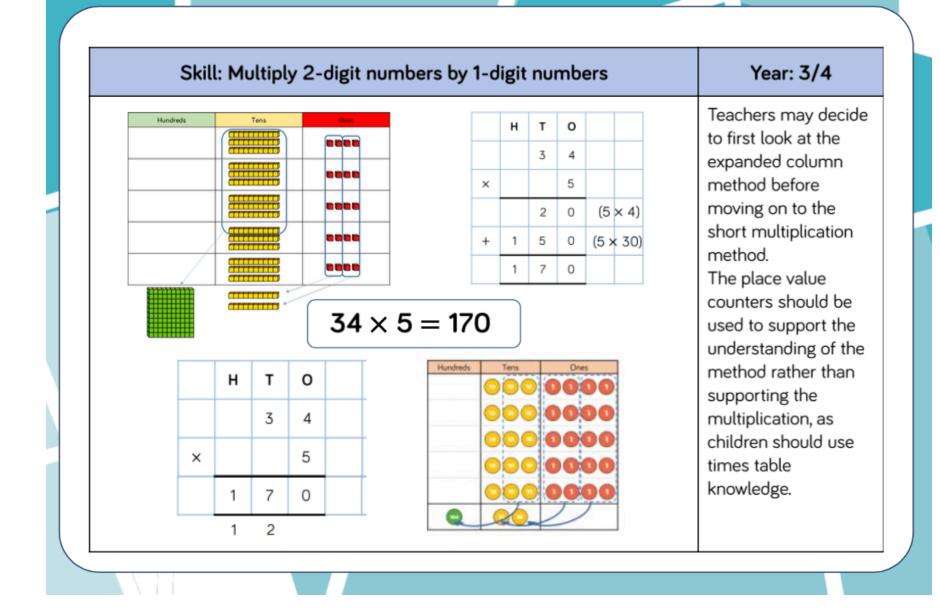
Skill: 8 times table										
8 16 8 16 8 16 48 56 64										

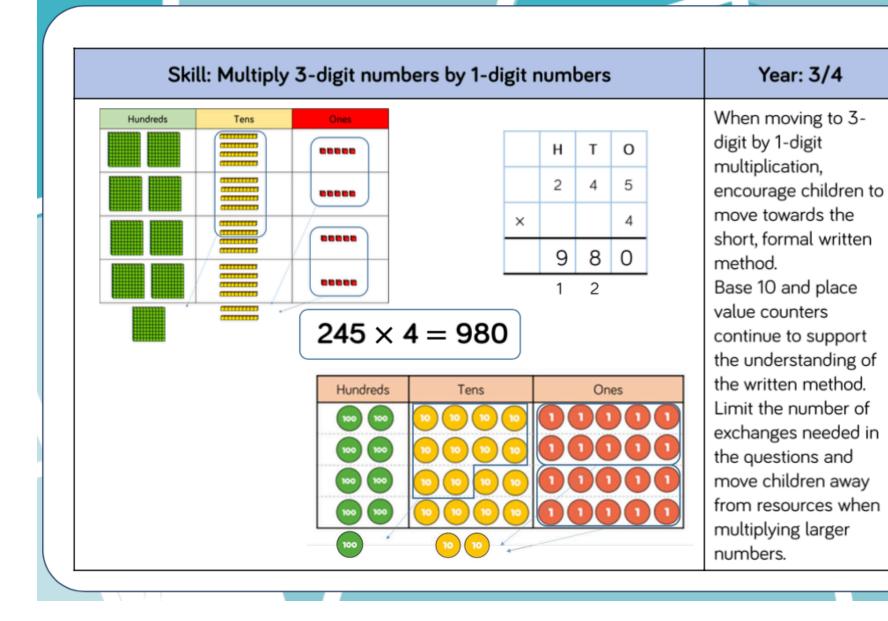
	Skill: 6 times table													Year: 4	
					1	2	3	4	5	6	7	8	9	10	Encourage daily
					11	12	- T	14	15	16	17	18	19	20	counting in multiple
					21	22		24	25	26	27	-	29	30	supported by a
					31	32	33	34	-	36	37	38	39	40	number line or a
					41	42	43	44	45	46	47	48	49	50	hundred square.
					51	52	53	64	55	56	57		59	60	Look for patterns in
6	12	18	24	30	61	62	63	64	65	66	67	68	69	70	the six times table, using manipulative
					71	72	73	74	75	76	77	78	79	80	to support. Make li
3 <mark>6</mark>	42	48	54	6 <mark>0</mark>	81	82	83	84	85	86	87	88	89	90	to the 3 times table
66	72	7 <mark>8</mark>	84	90	91	92	93	94	95	96	97	98	99	100	seeing how each
-(>>>> ⊢+ • •)))) 2 18	-+-	22 	+	-	-C +	×		∭ ₩	() + 72)>		multiple is double to threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shap to support.

Skill: 9 times table												Year: 4		
9 54		27 72	-	45 90	+	62 82 92	63 73 83 93	34 44 64 74 84 94	25 35 65 75 85 95	30 46 56 66 76 86 96	 27 37 47 57 67 77 87 97 	28 2 38 3 48 4 58 5 68 6 78 7 88 8 98 9 98	9 20 9 30 9 40 9 50 9 60 9 60 9 70 9 80 9 80 9 90 9 100	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.

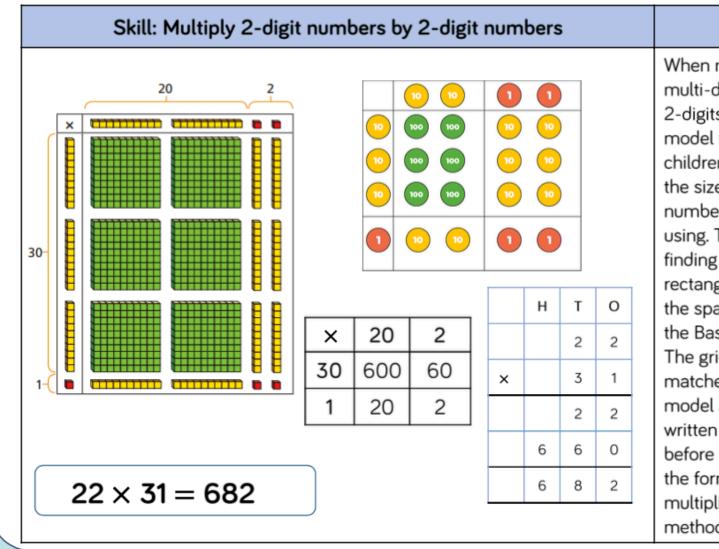
Skill: 7 times table										
7 14 21 28 35 42 49 56 63 70 ••••••••••••••••••••••••••••••••••••	7 8 9 10 17 18 19 20 27 28 29 30 37 38 39 40 47 48 49 50 57 58 59 60 67 68 69 70 87 88 89 90 97 99 100 84 89 90 97 99 100	Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square. The seven times table can be trickier to learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support.								

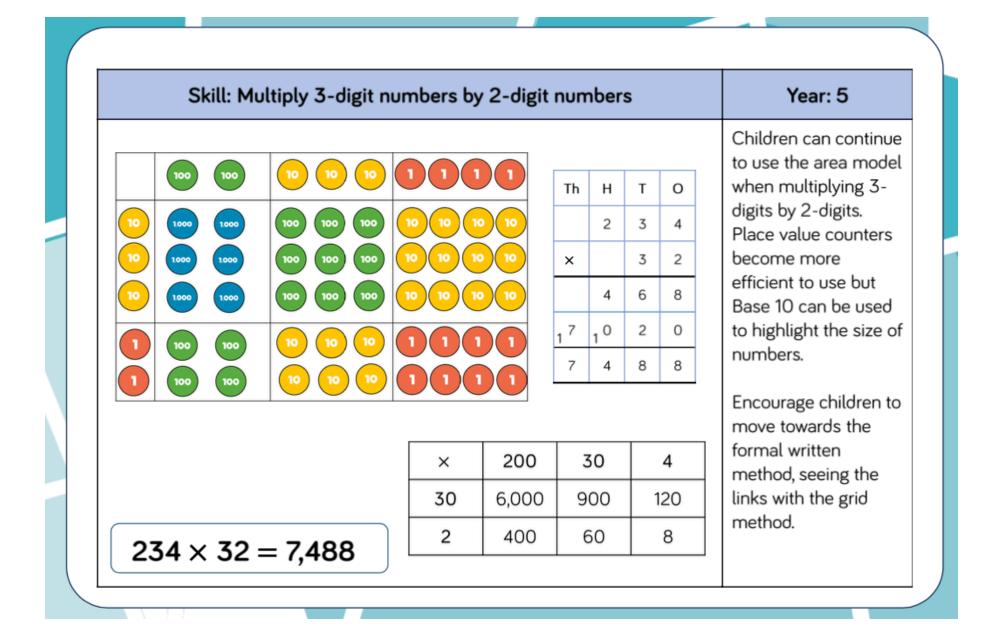



				Skil	l: 12 times	tab	le								Year: 4
						1	2	3 4	5	6	7	8	9	10	Encourage daily
12	24	36	48	6 <mark>0</mark>		11 (12	13 14	15	16	17	18	19	20	counting in multiples,
72	84	96	108	120		21	22 2	23 24	25	26	27	28	29	30	supported by a
12		50	100	120		31	32 3	33 34	35	36	37	38	39	40	number line or a
132	144					41	42	43 44	45	46	47	48	49	50	hundred square.
						51	52 5	53 54	55	56	57	58	59	60	Look for patterns in
		(יעי) (61	62 6	63 64	65	66	67	68	69	70	the 12 times table,
		10	1 1			71	72 7	73 74	75	76	77	78	79	80	using manipulatives to support. Make links
							_	33 😣	85	86	87	88	89	90	to the 6 times table,
						91	92 9	93 94	95	96	97	98	99	100	
	10 1 1 91 92 93 94 95 96 97 98 99 100 10 1 1 1 91 92 93 94 95 96 97 98 99 100 10 1 1 1 91 92 93 94 95 96 97 98 99 100 10 1 1 1 91 92 93 94 95 96 97 98 99 100 10 1 1 1 91 92 93 94 95 96 97 98 99 100 10 1 1 1 91 92 93 94 95 96 97 98 99 100 10 1 1 1 91 92 93 94 95 96 97 98 99 100 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						multiple is double the sixes. Notice the pattern in the ones within each group of five multiples. The hundred square can support in highlighting this								



Skill	Year	Representati	ons and models
Solve one-step problems with multiplication	1/2	Bar model Number shapes Counters	Ten frames Bead strings Number lines
Multiply 2-digit by 1- digit numbers	3/4	Place value counters Base 10	Short written method Expanded written method
Multiply 3-digit by 1- digit numbers	4	Place value counters Base 10	Short written method
Multiply 4-digit by 1- digit numbers	5	Place value counters	Short written method

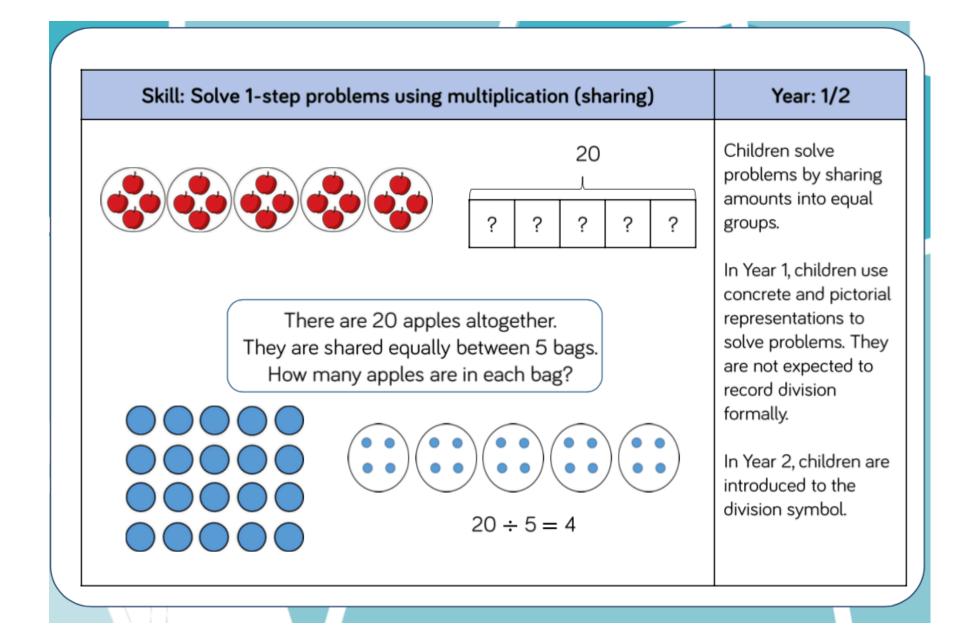

Skill	Year	Representation	ns and models
Multiply 2-digit by 2- digit numbers	5	Place value counters Base 10	Short written method Grid method
Multiply 2-digit by 3- digit numbers	5	Place value counters	Short written method Grid method
Multiply 2-digit by 4- digit numbers	5/6	Formal written method	

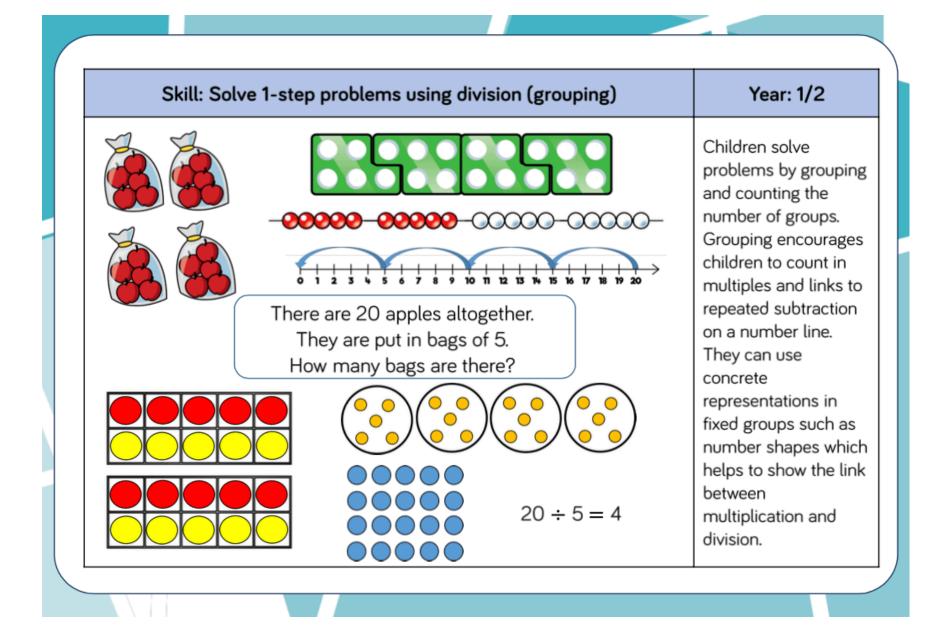


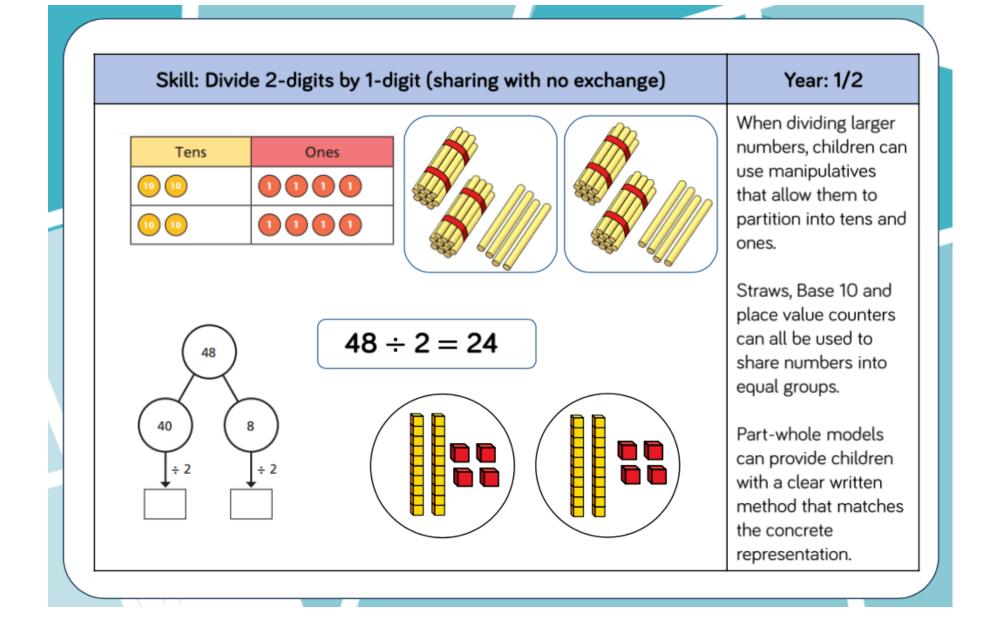
Skill: Multiply 4-di	git numbers by 1-di	git numbers	Year: 5
	$ \begin{array}{c cccccccccccccccccccccccccccccccc$		When multiplying 4- digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.

Year: 5

When multiplying a multi-digit number by 2-digits, use the area model to help children understand the size of the numbers they are using. This links to finding the area of a rectangle by finding the space covered by the Base 10. The grid method matches the area model as an initial written method before moving on to the formal written multiplication method.

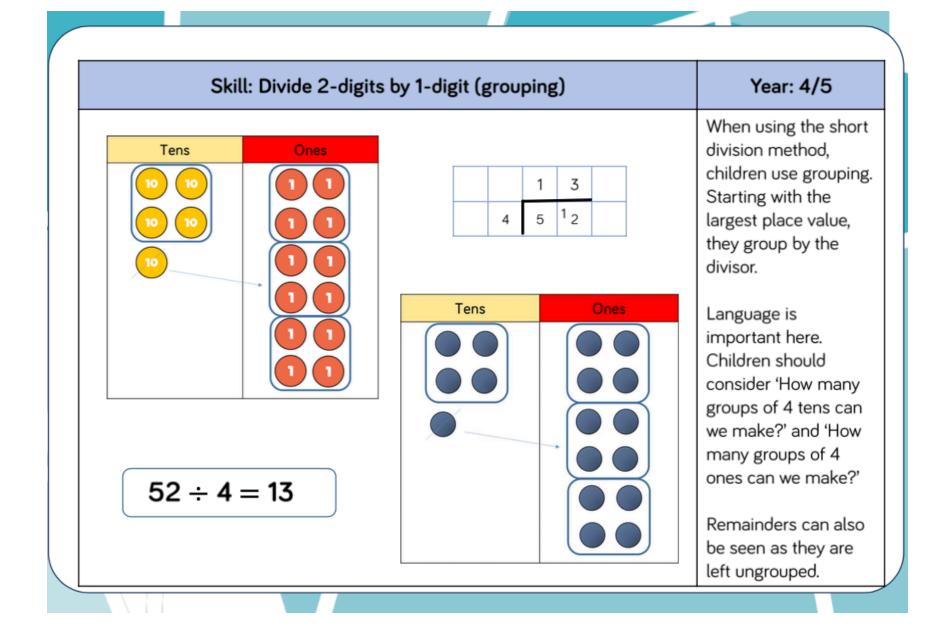

	ultiply 4-di	When multiplying 4-					
	TTh	Th	н	т	0		digits by 2-digits, children should be
		2	7	3	9		confident in the written method.
	×			2	8		If they are still struggling with times
	22	1 5	9 3	1 7	2		tables, provide multiplication grids to support when they
	5	4	7 1	8	0		are focusing on the use of the method.
	7	6	6	9	2		Consider where
2,739 × 28	exchanged digits are placed and make sure this is consister						

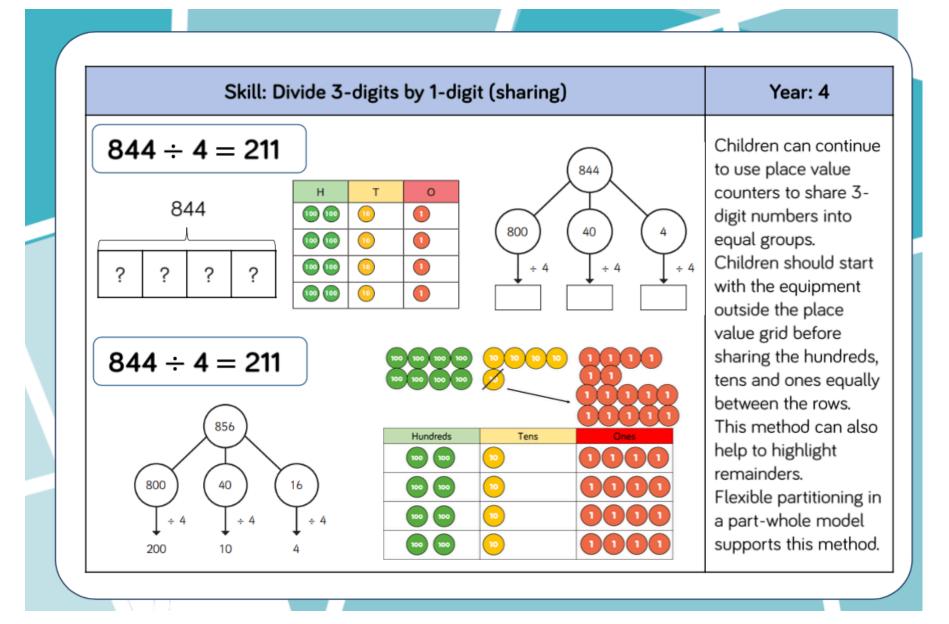


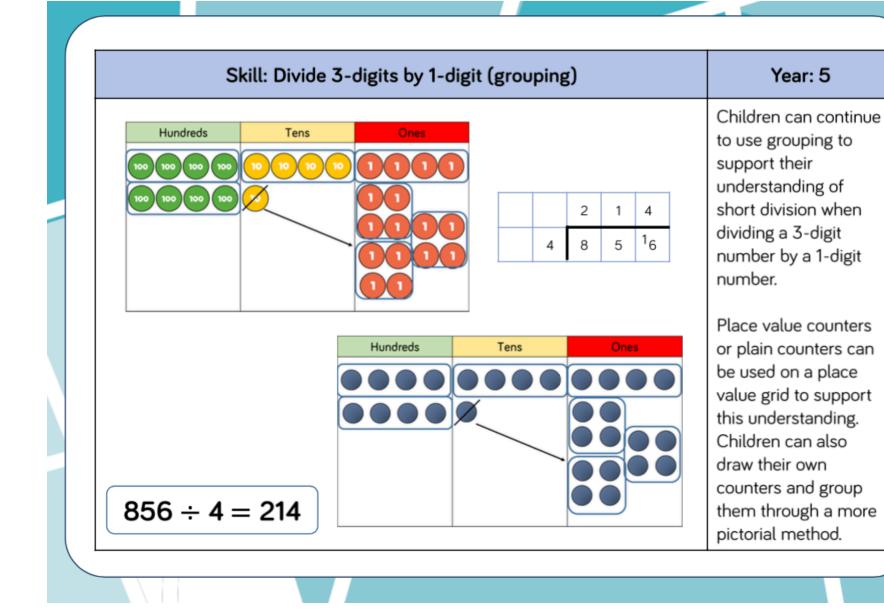

Skill	Year	Representati	ons and models	
Solve one-step problems with division (sharing)	1/2	Bar model Real life objects	Arrays Counters	
Solve one-step problems with division (grouping)	1/2	Real life objects Number shapes Bead strings Ten frames	Number lines Arrays Counters	
Divide 2-digits by 1- digit (no exchange sharing)	digit (no exchange 3 Base 10			
Divide 2-digits by 1- digit (sharing with exchange)	3	Straws Base 10 Bar model	Place value counters Part-whole model	

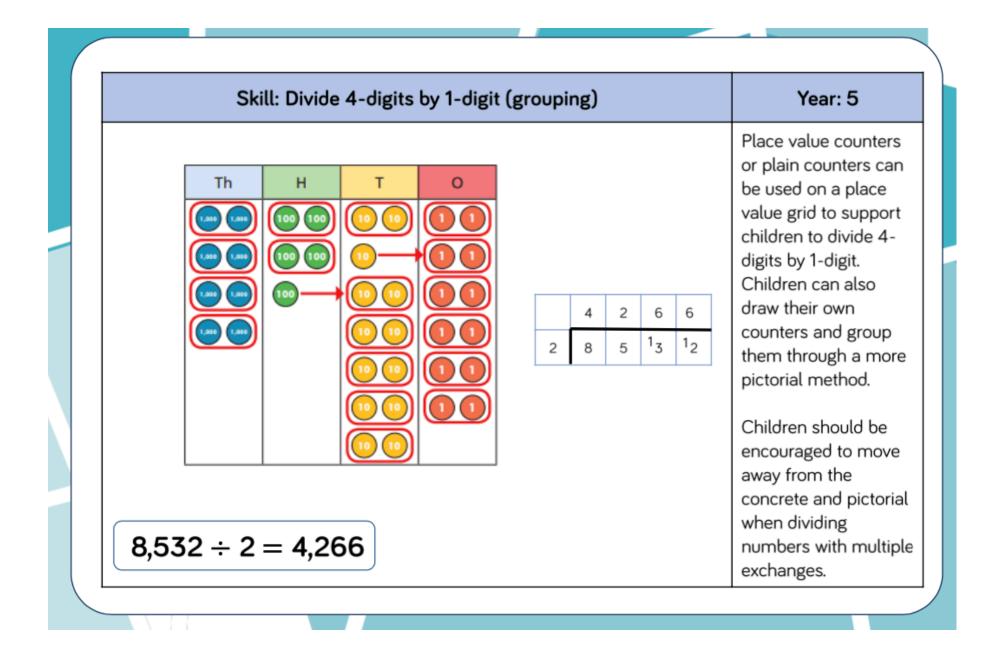
Skill	Year	Representatio	ns and models		
Divide 2-digits by 1- digit (sharing with remainders)	3/4	Straws Base 10 Bar model	Place value counters Part-whole model		
Divide 2-digits by 1- digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division		
Divide 3-digits by 1- digit (sharing with exchange)	digit (sharing with 4 Bar model				
Divide 3-digits by 1- digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division		

Skill	Year	Representatio	ns and models
Divide 4-digits by 1- digit (grouping)	5	Place value counters Counters	Place value grid Written short division
Divide multi-digits by 2-digits (short division)	6	Written short division	List of multiples
Divide multi-digits by 2-digits (long division)	6	Written long division	List of multiples








Skill: Divide 2	2-digits by 1	-digit (sharing wit	h excha	nge)	Year: 3/4
					When dividing
Tens	Ones		52		numbers involving
			1		exchange, children
					can use Base 10 a
		?	? ?	?	place value counte
					to exchange one to for ten ones.
					Children should st
					with the equipmer
52	52	÷ 4 = 13			outside the place
\sum			000	000	value grid before
$\prec \succ$		000	000	000	sharing the tens a
(40) (12)		Tens		nes	ones equally betw
γ γ	4				the rows.
	- 4	<u>></u>			Flexible partitionin
10 3			0		a part-whole mod
10 + 3 = 13					supports this meth

Skill: Divide	2-digits by	1-digit (sharing with remainders)	Year: 3/4
			When dividing
Tens	Ones		numbers with
		53	remainders, childi
			can use Base 10 a
		13 13 13 13 1	place value count
			to exchange one t for ten ones.
			Starting with the
		•	equipment outsid
(57)	57	3 ÷ 4 = 13 r1	the place value gr
(53)	5	5 ÷ 4 = 1511	will highlight
			remainders, as the
(40) (13)			will be left outside
	<	Tens Ones	grid once the equ
	\sim		groups have been
^{÷4} (12) (1)	000	made.
+ + 4			Flexible partitioni
10 •		000	a part-whole moo supports this met

	Skill:	Year: 6								
	12	0	3 6 4 ₃ 7	2		432	÷ 12	2 = 3	6	When children beg to divide up to 4- digits by 2-digits, written methods become the most accurate as concre and pictorial representations become less effect Children can write multiples to suppor
						0	4	8	9	their calculations w larger remainders.
7,3	35 ÷	- 15 -	= 48	9	15	7	73	¹³ 3	¹³ 5	Children will also solve problems wit
15	30	45	60	75	90	105	120	135	150	remainders where quotient can be rounded as appropriate.

		S	kill:	Year: 6										
1	2 -	043	3 3 6 7 7	6 2 0 2 2 0	(×30 (×6)	$12 \times 4 = 48$ $12 \times 5 = 60$ $12 \times 6 = 72$			43	2	÷	12 =	= 36	Children can also divide by 2-digit numbers using long division. Children can write o multiples to support their calculations wit larger remainders.
								0	4	8	9		1 × 15 = 15	Children will also
							15	7	3	3	5 0	(×400	$2 \times 15 = 30$	solve problems with
-	77	76		1	F	400	-	6	3	3	5	(×400	$3 \times 15 = 45$	remainders where the
	<i>(</i> ,3	30	· ·	- 1	э =	489	-	1	2	0	0	(×80)	$4 \times 15 = 60$	quotient can be
									1	3	5		$5 \times 15 = 75$	rounded as
							-		1	3	5	(×9)	$10 \times 15 = 150$	appropriate.
											0			

									2	4	r	1	2	1 × 15 = 15	When a remainder is
						1	5	3	7	2				$2 \times 15 = 30$	left at the end of a
770		10		~	4		-	3	0	0				$3 \times 15 = 45$	calculation, children can either leave it as
5/2	÷	10) =	- 2	24 r12				7	2				$4 \times 15 = 60$	remainder or convert
							-		6	0				$5 \times 15 = 75$ 10 × 15 = 150	it to a fraction.
									1	2				10 × 15 = 150	This will depend on the context of the
															question.
				2	$4 \frac{4}{5}$										4
	1	5	3	7	2 5										Children can also
	-	_	3	0	0		\bigcap							4	answer questions where the quotient
			-	7	2		3	572	2 -	- 1	5	=	24	$\frac{4}{5}$	needs to be rounded
		_		6	0										according to the
	-			1	2										context.

-

Glossary

Array – An ordered collection of counters, cubes or other item in rows and columns.

Commutative – Numbers can be multiplied in any order.

Dividend – In division, the number that is divided.

Divisor – In division, the number by which another is divided.

Exchange – Change a number or expression for another of an equal value.

Factor – A number that multiplies with another to make a product.

Multiplicand – In multiplication, a number to be multiplied by another.

Partitioning – Splitting a number into its component parts.

Product – The result of multiplying one number by another.

Quotient - The result of a division

Remainder – The amount left over after a division when the divisor is not a factor of the dividend.

Scaling – Enlarging or reducing a number by a given amount, called the scale factor